Teknologi

LED-pærer

Elektronhopp illustrert med trappeanalogien. Elektronet hoppar frå eit energiband (trappetrinn) i det eine atomet til eit anna energiband i det andre og slepper ut eit foton (lys) på vegen.
Elektronhopp illustrert med trappeanalogien. Elektronet hoppar frå eit energiband (trappetrinn) i det eine atomet til eit anna energiband i det andre og slepper ut eit foton (lys) på vegen.
Publisert

Alle har vi vel merka at det er vanskeleg å finne gammaldagse glødepærer i butikken. EU har nemleg innført forbod mot produksjon av slike. Butikkane kan selje restlageret, men så er det slutt. Grunnen er at desse og andre typar lyspærer produserer altfor mykje varme i høve til lysmengda dei gjev oss. Om ikkje lenge er det nok berre LED-pærer å få kjøpt til lys i hushaldet.

Glødepærer brukar så mykje som 95 prosent av energien til oppvarming. Å skifte frå 60 W glødepærer til 6 W LED-pærer inneber derfor ei solid energisparing. Ei gjetting er at hushalda sparer 20–30 prosent av straumrekninga ved å byte til LED-pærer. Men så kjøper folk nye lamper til uteveggene eller dei hengjer opp lysdekorasjonar til jul, og så går straumforbruket opp att.

LED står for lysemitterande diodar og er basert på det vi kallar halvleiarar. Slike lysdiodar vart først oppfunne på 1920-talet av ein sovjetisk forskar, Oleg Lesov. Oppfinninga gjekk i gløymeboka, men fenomenet vart oppdaga på nytt i USA tidleg i 1960-åra. Aktiviteten rundt teknologien auka, og i 2014 fekk tre japanarar nobelprisen for å ha oppfunne den blå lysdioden. Den er viktig for å kunne få kvitt lys frå lyspærene. Kvitt lys treng nemleg ein blå komponent for at vi skal sanse det som kvitt.

Diodar er bygde av fast stoff som leier straum den eine vegen, men ikkje den andre. Sidan straum handlar om elektron som flyt gjennom materiale, må ein heilt ned på eigenskapane til ulike grunnstoff for å forklare kvifor denne prosessen kan lage lys.

Det kvantefysiske omgrepet energiband er sentralt i forklaringa. Dette er energinivå som elektron kan ha. Men samstundes er det avgrensa kva energinivå eit elektron kan vere på. Med ein analogi kan ein tenkje seg at kvart elektron i eit atom berre kan vere på eitt av trappetrinna i ei trapp, aldri mellom to trappetrinn.

Dei elektrona som har lågast energi, ligg på dei lågaste trappetrinna, medan dei med høg energi ligg lenger oppe i trappa. På kvart trappetrinn er det avgrensa kor mange elektron det er plass til. Dei nedste trinna er nesten alltid fulle, medan dei øvste kan ha nokre få elektron.

Digital tilgang – heilt utan binding

Prøv ein månad for kr 49.
Deretter kr 199 per månad. Stopp når du vil.


Eller kjøp eit anna abonnement