Akselerometeret
Rørsleregistrering via fotmontert akselerator med tre aksar.
Foto via Wikimedia Commons
I 2017 kunne vi lese i avisene at helseminister Bent Høie hadde fått målt fysisk aktivitet ei veke i oktober. Han brukte to sensorar festa til lår og rygg. Data frå desse vart så brukte til å avdekke kor mykje tid Høie hadde brukt på å gå, stå, ligge, sitte, sykle eller jogge.
Sensorane som vart brukte, var to triaksiale akselerometer, altså utstyr som måler akselerasjon i tre retningar. Slik fekk ein rørsledata målte opptil 100 gonger per sekund to plassar på kroppen. Totalt seks akselerasjonsverdiar per måling. Dataa vart lagra i sensoren, henta ut etter ei veke og vidare analyserte ved hjelp av maskinlærte modellar. Høie hadde ikkje vore spesielt aktiv: Han hadde korkje sykla eller sprunge den veka og hadde på den mest aktive dagen gått i litt over tre timar.
Seinare har mange tusen nordtrønderar brukt desse sensorane for å gje forskarar oversikt over aktivitetsnivået deira. Aktivitetsmålingane har vore ein del av ei stor helseundersøking der ein over tid har samla helsedata om nordtrønderar (HUNT – Helseundersøkelsen i Trøndelag).
Det du kanskje ikkje tenker på, er at akselerometer er standardutstyr i dagens mobiltelefonar. Du dreg nytte av det når du sjekkar om du har gått dine daglege 10.000 skritt, men òg når skjermbiletet snur seg slik at tekst og bilete kjem rett veg når du vender på mobiltelefonen.
Spelkontrollaren og virtuell røynd(VR)-utstyr har slike for å oppnå visuelle effektar og rørsleeffektar i dataspel. For høgst mogleg presisjon skjer dette i samspel med gyroskopet og magnetfeltmålaren, som er andre sensorar du har i mobilen din.
Akselerometer utnyttar Newtons første lov – tregleikslova. Ho seier at ein lekam vil ligge i ro eller flytte seg med konstant fart om han ikkje vert utsett for krefter. Eit mekanisk akselerometer har ei fast ramme der det er festa eit lodd som er festa i ei stiv ramme med ei fjør. Når det skjer ein akselerasjon av ramma, vil han dra i fjøra, men loddet vil jo helst ligge i ro (det er tregt), så ein del av den krafta som verkar langs fjøra, vert brukt til å strekke fjøra. Ein kan måle graden av akselerasjon ved å måle kor mykje fjøra er strekt.
Eit slikt akselerometer krev litt plass og kan derfor ikkje brukast i mobilen din. Likevel er det det same prinsippet om tregleik som vert brukt, berre i nærast mikroskopisk skala. Inne i mobilen er det ein liten firkanta komponent som er nokre millimeter på tvers. Den inneheld ein såkalla mikroelektromekanisk sensor (mems) som målar akselerasjon.
Memsar inneheld eit tøyeleg materiale, ei silisiumlegering forma på ein smart måte. Dette silisiummaterialet gjev oss ein versjon av den elektroniske vedunderkomponenten som vi kallar kondensator.
Dei enklaste kondensatorane er to metallplater som står mot kvarandre og har eit isolerande lag (til dømes luft) mellom seg. Ein kan no kople eit batteri til desse, slik at den negative polen på batteriet er kopla til den eine plata, og den positive polen til den andre plata. Då vil det strøyme elektron frå batteriet til den negative plata, medan den positive plata vil miste elektron. Avhengig av faktorar som spenning, form, avstand og materiale vil platene stabilisere seg på ei fast lading.
I mems-akselerometeret dreg ein nytte av det vi kallar ein differensialkondensator. Denne er forma slik at den positive polen er knytt til to fastlåste plater som ligg mot kvarandre, som ein vanleg kondensator, men her er begge platene på den positive polen. Mellom dei ligg ein slags pinne som er kopla til den negative polen.
Pinnen er ein del av eit større stykke tøyeleg silisiummateriale. Sidan denne delen er tøyeleg, vil han vere påverka av tregleikslova og dra pinnen i motsett retning av akselerasjonen (sett frå den faste ramma). Då vil han komme nærare den eine positive plata. Den negative ladinga i pinnen vil jage elektron vekk frå denne plata og bort til den andre positive plata. Akselerasjonen har skapt ein elektrisk straum som kan lesast av og formast om til eit tal som vi kan lagre.
I eit skikkeleg mems-akselerometer er det ikkje berre éin slik negativ pinne, men mange. Kvar av dei ligg mellom to positivt ladde pinnar som er fastlåste. Det heile vert som to kamliknande strukturar der tennene på kammen ligg mellom kvarandre, men ikkje rører kvarandre.
Storleiken på desse komponentane er ned mot tidels millimeter på kvar pinne. Den finstemte materialteknologien ein treng for å lage slike bitte små og nøyaktige silisiumstrukturar, er kanskje endå meir imponerande enn sjølve ideen om ein differensialkondensator.
Alle skritt som blir talde av treningsklokka di, eller rørsler som du styrer VR-opplevinga di med, er resultat av små akselerasjonar eller oppbremsingar. Når du landar eit skritt, skjer det ei bremsing, når du sparkar frå, skjer det ein akselerasjon. Treningsklokka di tel kvart skritt ved å nytte regulære mønster i datasekvensane til å avgjere om du nettopp har landa eit skritt eller sparkar frå.
Kombinasjonen av finstemd elektronikk og avansert programvare gjer at vi kan oppdatere treningsdagboka med presise tal på dagens skritt, vi kan få naturtru synsopplevingar i VR, og vi kan måle aktivitetsnivået til nordtrønderar.
Bjørnar Tessem
Er du abonnent? Logg på her for å lese vidare.
Digital tilgang til DAG OG TID – heilt utan binding
Prøv ein månad for kr 49.
Deretter kr 199 per månad. Stopp når du vil.
I 2017 kunne vi lese i avisene at helseminister Bent Høie hadde fått målt fysisk aktivitet ei veke i oktober. Han brukte to sensorar festa til lår og rygg. Data frå desse vart så brukte til å avdekke kor mykje tid Høie hadde brukt på å gå, stå, ligge, sitte, sykle eller jogge.
Sensorane som vart brukte, var to triaksiale akselerometer, altså utstyr som måler akselerasjon i tre retningar. Slik fekk ein rørsledata målte opptil 100 gonger per sekund to plassar på kroppen. Totalt seks akselerasjonsverdiar per måling. Dataa vart lagra i sensoren, henta ut etter ei veke og vidare analyserte ved hjelp av maskinlærte modellar. Høie hadde ikkje vore spesielt aktiv: Han hadde korkje sykla eller sprunge den veka og hadde på den mest aktive dagen gått i litt over tre timar.
Seinare har mange tusen nordtrønderar brukt desse sensorane for å gje forskarar oversikt over aktivitetsnivået deira. Aktivitetsmålingane har vore ein del av ei stor helseundersøking der ein over tid har samla helsedata om nordtrønderar (HUNT – Helseundersøkelsen i Trøndelag).
Det du kanskje ikkje tenker på, er at akselerometer er standardutstyr i dagens mobiltelefonar. Du dreg nytte av det når du sjekkar om du har gått dine daglege 10.000 skritt, men òg når skjermbiletet snur seg slik at tekst og bilete kjem rett veg når du vender på mobiltelefonen.
Spelkontrollaren og virtuell røynd(VR)-utstyr har slike for å oppnå visuelle effektar og rørsleeffektar i dataspel. For høgst mogleg presisjon skjer dette i samspel med gyroskopet og magnetfeltmålaren, som er andre sensorar du har i mobilen din.
Akselerometer utnyttar Newtons første lov – tregleikslova. Ho seier at ein lekam vil ligge i ro eller flytte seg med konstant fart om han ikkje vert utsett for krefter. Eit mekanisk akselerometer har ei fast ramme der det er festa eit lodd som er festa i ei stiv ramme med ei fjør. Når det skjer ein akselerasjon av ramma, vil han dra i fjøra, men loddet vil jo helst ligge i ro (det er tregt), så ein del av den krafta som verkar langs fjøra, vert brukt til å strekke fjøra. Ein kan måle graden av akselerasjon ved å måle kor mykje fjøra er strekt.
Eit slikt akselerometer krev litt plass og kan derfor ikkje brukast i mobilen din. Likevel er det det same prinsippet om tregleik som vert brukt, berre i nærast mikroskopisk skala. Inne i mobilen er det ein liten firkanta komponent som er nokre millimeter på tvers. Den inneheld ein såkalla mikroelektromekanisk sensor (mems) som målar akselerasjon.
Memsar inneheld eit tøyeleg materiale, ei silisiumlegering forma på ein smart måte. Dette silisiummaterialet gjev oss ein versjon av den elektroniske vedunderkomponenten som vi kallar kondensator.
Dei enklaste kondensatorane er to metallplater som står mot kvarandre og har eit isolerande lag (til dømes luft) mellom seg. Ein kan no kople eit batteri til desse, slik at den negative polen på batteriet er kopla til den eine plata, og den positive polen til den andre plata. Då vil det strøyme elektron frå batteriet til den negative plata, medan den positive plata vil miste elektron. Avhengig av faktorar som spenning, form, avstand og materiale vil platene stabilisere seg på ei fast lading.
I mems-akselerometeret dreg ein nytte av det vi kallar ein differensialkondensator. Denne er forma slik at den positive polen er knytt til to fastlåste plater som ligg mot kvarandre, som ein vanleg kondensator, men her er begge platene på den positive polen. Mellom dei ligg ein slags pinne som er kopla til den negative polen.
Pinnen er ein del av eit større stykke tøyeleg silisiummateriale. Sidan denne delen er tøyeleg, vil han vere påverka av tregleikslova og dra pinnen i motsett retning av akselerasjonen (sett frå den faste ramma). Då vil han komme nærare den eine positive plata. Den negative ladinga i pinnen vil jage elektron vekk frå denne plata og bort til den andre positive plata. Akselerasjonen har skapt ein elektrisk straum som kan lesast av og formast om til eit tal som vi kan lagre.
I eit skikkeleg mems-akselerometer er det ikkje berre éin slik negativ pinne, men mange. Kvar av dei ligg mellom to positivt ladde pinnar som er fastlåste. Det heile vert som to kamliknande strukturar der tennene på kammen ligg mellom kvarandre, men ikkje rører kvarandre.
Storleiken på desse komponentane er ned mot tidels millimeter på kvar pinne. Den finstemte materialteknologien ein treng for å lage slike bitte små og nøyaktige silisiumstrukturar, er kanskje endå meir imponerande enn sjølve ideen om ein differensialkondensator.
Alle skritt som blir talde av treningsklokka di, eller rørsler som du styrer VR-opplevinga di med, er resultat av små akselerasjonar eller oppbremsingar. Når du landar eit skritt, skjer det ei bremsing, når du sparkar frå, skjer det ein akselerasjon. Treningsklokka di tel kvart skritt ved å nytte regulære mønster i datasekvensane til å avgjere om du nettopp har landa eit skritt eller sparkar frå.
Kombinasjonen av finstemd elektronikk og avansert programvare gjer at vi kan oppdatere treningsdagboka med presise tal på dagens skritt, vi kan få naturtru synsopplevingar i VR, og vi kan måle aktivitetsnivået til nordtrønderar.
Bjørnar Tessem
Akselerometer utnyttar Newtons første lov – tregleikslova.
Fleire artiklar
Teikning: May Linn Clement
Krigen er ei ufatteleg ulukke for Ukraina. Men også for Russland er det som skjer, ein katastrofe.
Tusen dagar med russisk katastrofe
KrF-leiar Dag Inge Ulstein får ikkje Stortinget med seg på å endre retningslinjene for kjønnsundervisning i skulen.
Thomas Fure / NTB
Utfordrar kjønnsundervisninga
Norske skulebøker kan gjere elevar usikre på kva kjønn dei har, meiner KrF-leiar Dag Inge Ulstein.
Jens Stoltenberg gjekk av som generalsekretær i Nato 1. oktober. No skal han leie styringsgruppa for Bilderberg-møta.
Foto: Thomas Fure / NTB
Jens Stoltenberg blir partyfiksar for Bilderberg-møta, ein institusjon meir i utakt med samtida enn nokon gong.
Den rumenske forfattaren Mircea Cartarescu har skrive både skjønnlitteratur, lyrikk og litterære essay.
Foto: Solum Bokvennen
Mircea Cărtărescu kastar eit fortrolla lys over barndommen i Melankolien
Taiwanarar feirar nasjonaldagen 10. oktober framfor presidentbygget i Taipei.
Foto: Chiang Ying-ying / AP / NTB
Illusjonen om «eitt Kina»
Kina gjer krav på Taiwan, og Noreg anerkjenner ikkje Taiwan som sjølvstendig stat. Men kor sterkt står argumenta for at Taiwan er ein del av Kina?